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Abstract Economic analyses have produced widely differing estimates of the economic 
implications of policies for greenhouse gas (GHG) mitigation, ranging from high costs to 
modest benefits. The main reason for the differences appears to be differences in ap-
proaches and assumptions. This paper analyzes the extent to which the post-SRES1 (after 
the IPCC Special Report on Emissions Scenarios) model results for the global costs of 
GHG mitigation can be explained by the model's characteristics and the assumptions 
adopted. The research applies meta-analysis methodology combined with scatter plots of 
the data to identify the ranges of the results and outlying data points. A database of 
scenarios and results was compiled for the post-SRES scenarios, which has the major 
advantage that a11 seven models for which suitable data are available have been run using 
the same, independently defined scenarios. The results are strongly clustered, with only a 
few results outside the range of -4% to 0% gross domestic product (GDP), with a strong 
correlation between CO2 reduction and GDP reduction. A set of model characteristics is 
found to be highly significant (1 % level), explaining some 70% of the variance. The main 
conclusion is that a11 modeling results regarding "GDP costs of mitigating climate change" 
should be qualified by the key assumptions leading to the estimates. The treatment of 
these assumptions can lead to the mitigation being associated with increases in GDP or 
with reductions. 

Key words GHG policy models· Post-SRES scenarios· Model comparisons 

1 Introduction 

The balance of evidence suggests that anthropogenic emissions of greenhouse 
gases (GHGs) (of which CO2 is the most important) are having a discernible 
impact on the global climate and that this impact is expected to grow stronger 
over the next 100 years. The Intergovernmental Panel on Climate Change (IPCC 
1996a, 2001) has projected increases ranging up to 5.8°C in the global average 

1 SRES: IPCC Special Report on Emissions Scenarios (Nakicenovic et al. 2000). The modeling 
teams involved with the SRES have run their models to achieve aseries of stabilization levels 
for GHG concentrations in the atmosphere: They are referred to as the post-SRES scenarios. 
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temperature by 2100, with important regional variations. Consequently, there 
have been international efforts to develop policies that will control or reduce 
GHG emissions, culminating in the proposed setting of legally binding reductions 
targets at the 1997 Kyoto conference. These targets have been subsequently 
agreed to by a large number of states, with the exception of the United States, 
and with a prospect of full ratification as the Kyoto Protocol. This policy debate 
has been informed by economic and engineering assessments of methods for 
GHG mitigation and their economic consequences. 

These analyses have resulted in considerable controversy, particularly in re-
gard to their assessments of economic costs in terms of welfare and GDP losses. 
The United States based its decision to withdraw from the Kyoto process in part 
on the perceived high cost of mitigation for the U.S. economy. The estimation of 
the economic impact of global warming is subject to a great deal of uncertainty, 
and economic analyses have produced widely differing estimates of the economic 
implications of policies (e.g., carbon taxes) for emissions reduction. Barker and 
Rosendahl (2000), in an analysis of carbon taxation in Europe, estimate that the 
Kyoto target of an 8% reduction in GHG emissions from 1990 levels by 2008-
2012 can be achieved with an increase of 0.8% in the European Union's (EU) 
GDP over the baseline. In contrast, Co oper et al. (1999), in a paper estimating the 
cost to the United States to reach its Kyoto target without international permit 
trading and holding emissions at their 1990 levels after 2010, estimate that the 
U.S. GDP would be reduced by 4% below the baseline by 2020.2 

The main aim of this paper is to analyze the extent to which the modeling 
results for post-SRES scenarios reporting the global costs of GHG mitigation 
reflect the methods and assumptions adopted in the models. Rana and Morita 
(2000) reviewed various mitigation scenarios from integrated assessment models 
(IAMs) and found that macroeconomic costs are independent of the economic 
growth assumptions in the baseline, but they stopped short of reviewing the 
relation between the costs of mitigation and assumptions of the policy scenarios 
and their modeling. Post-SRES scenarios were reviewed by Morita et al. (2000). 
Our paper extends these analyses to the relation between CO2 mitigation and 
GDP costs and argues that the modeling results arise largely as a consequence 
of the assumptions adopted, rather than from a primary consideration of the 
problem being addressed. 

Any empirical study takes place against the background of aseries of main-
tained hypotheses that are not themselves tested as part of the analysis but are 
assumed true. In this context, the outcome of a specific test of the hypothesis 
depends in general on both the validity of the hypothesis under examination and 
the validity of the maintained hypothesis. An analysis performed in the presence 
of an unrealistic maintained hypo thesis cannot be considered convincing. For 
example, ass urne that some sectors of the economy exhibit increasing returns to 
scale. The robustness of the results of a model would be highly questionable if 

2 However, this high cost estimate is derived from an invalid use of a short-run equation. See 
Barker and Ekins (2001). 
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they were the consequence of assuming constant returns to scale (the maintained 
hypothesis) rather than of the policies for GHG mitigation (the primary hypoth-
esis ) in which the modeler is interested. 

The controversy regarding the costs of GHG mitigation has been discussed 
extensively in the literature, with different authors emphasizing different aspects 
of modeling. Carraro and Hourcade (1998) looked at the effect of technical 
change, and DeCanio (1997) discussed inefficient production inside the 
production-possibilities frontier. Azar (1998) considered the treatment of low 
probability but catastrophic events, cost-calculation methods, the choice of the 
discount rate, and the choice of decision criteria. Quite apart from these funda-
mental questions, assumptions embedded in the economic models change the 
conclusions. Examples of such assumptions are whether (1) the baseline is taken 
to be an optimal equilibrium, as in the computable general equilibrium (CGE) 
models, or (2) the world is in disequilibrium, as in some of the macroeconometric 
models. Furthermore, some studies consider different scenarios regarding the 
time scale and size of emission reductions to be achieved. Studies by Cline (1992), 
Nordhaus (1994), IPCC (1996b), and Mabey et al. (1997) are representative of 
the extensive literature discussing these issues. Weyant (1993) and Weyant and 
Hill (1999) reviewed results from the Stanford Energy Modeling Forum group of 
modelers (EMF-12 and EMF-16, respectively). There has been little quantitative 
work reviewing such results, however, although there are substantial qualitative 
reviews and summaries of results in the IPCC reports (1996a, 2001). 

The starting point of the research reported in this paper is the comprehensive 
quantitative survey of GHG mitigation costs undertaken at the World Resources 
Institute (WRI) (Repetto and Austin 1997), which assesses studies of the costs 
to the D.S. economy. Acknowledging the inherent difference between top-down 
economic models and bottom-up technology-based models, this study concen-
trates on economic top-down models. The WRI survey uses econometric regres-
sion techniques to assess the role of assumptions in determining the projected 
GDP cost of CO2 mitigation. Most of the studies covered in the survey used a 
carbon tax explicitly or as an implicit addition to the price of carbon needed to 
restrict its use. The WRI assessment includes 162 predictions from 16 models. 
The regression research explains the percent change in the D.S. GDP in terms of 
the CO2 reduction target, the number of years to meet the target, the assumed use 
of carbon tax revenues, and seven model attributes. It estimates that in the worst 
case scenario of combining these assumptions and attributes, a 30% reduction in 
D.S. baseline emissions by 2020 would cost about 3% of the GDP. The corre-
sponding best case scenario implies an increase of about 2.5% in the GDP above 
the baseline. The total difference of 5.5 percentage points (pp) of the GDP 
(3.0 pp plus 2.5 pp) is allocated to the recycling assumption (1.2 pp) and across the 
seven model attributes, which are as folIows. 

1. CGE models give lower costs than macroeconometric models (1.7pp) 
2. Inclusion of averted nonclimate change damage (e.g., air pollution effects: 

1.1 pp) 
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3. Inclusion of joint implementation, international emission permit trading, or 
both (0.7 pp) 

4. A vailability of constant -cost backs top technology (0.5 pp) 
5. Inclusion of averted climate change damages in the model (0.2 pp) 
6. Whether the model allows for product substitution (0.1 pp) 
7. How many primary fuel types are included, to allow for interfuel substitution 

(Opp) 

More than 70%3 of the vanatIon in GDP is explained by all these factors, 
including the CO2 target reductions. In summary, the worst ca se results come 
from using a macroeconometric model with lump-sum recycling of revenues, 
no emission permit trading, no environment al benefits in the model, and no 
backstop technology. 

The WRI study convincingly shows how model approaches and assumptions 
can and do inftuence the results. It reveals the inftuence of the model methodol-
ogy adopted and the importance of the ass um pt ion concerning the recycling of 
tax revenues. If published estimates of the macroeconomic effects of carbon taxes 
are interpreted in the light of these findings, the results of carbon taxes for the 
Vnited States and indeed for implementation of the Kyoto Protocol may not be 
as costly as first thought. The meta-analysis reported below on the costs of GHG 
mitigation assesses the WRI work and extends it to examine results from global 
models. 

2 Methods and data 

Method 

Meta-analysis as a methodology was discussed by van den Bergh and Button 
(1997) in the context of environment al studies. More specifically, meta-regression 
analysis was described by Stanley and larrell (1989) with informative applications 
by Smith and Kao (1990) and Nijkamp and Pepping (1998). Repetto and Austin 
(1997) applied the meta-regression methodology to results from V.S. macro-
economic modeling of CO2 mitigation policies. This paper applies the meta-
regression methodology to results from national and global models combined 
with scatter plots of the data to identify the ranges of the results and outlying data 
points. 

Data 

The advantage of this methodology is that detailed knowledge of the internal 
routines of the models is not required. The analysis starts by surveying both the 
descriptions of the models and the results reported in the literature. A database 

3 Repetto and Austin (1997) reported a goodness of fit of 0.8, but this value can be reproduced 
only by omitting the constant term in the regression. See below. 
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of scenarios and results has been compiled covering the results from the IAMs 
with the IPCC scenarios (Nakicenovic et al. 2000) and mitigation policies de-
signed to achieve stabilization of GHG concentrations in the atmosphere (Morita 
et al. 2000; Rana and Morita 2000). This dataset, with 429 observations, has the 
major advantage that all seven models for which suitable data are available have 
been run using the same, independently defined scenarios. Tables 1 and 2 list the 
models included in the analysis, their main characteristics and assumptions, and 
the primary sources for descriptions of the models. In addition, a more general 
data set of modeling results published in the literature has been compiled.4 These 
data cover a much wider range of models and scenarios, enabling the methodol-
ogy to be compared between two data sets. 

The variables used for the analysis were the results in terms of percent GDP 
changes from a baseline with the key scenario assumptions being the percent 
changes in CO2 emissions fram the baseline (taken as an assumption because it is 
an exogenous policy target in many studies) and the number of years over which 
these changes are assumed to take place. There are also a number of binary 
variables describing the characteristics of the models, such as the modeling of 
technical change, incorporation of a backstop technology, inclusion of the envi-
ronmental benefits of CO2 emission reductions, and the number of world regions 
or other dis aggregations covered by each model. The fulllist of variables is given 
in Appendix 2. One significant omission is the discount rate used in the models, 
which is often not reported, so it could not be included in the data set. However, 
given that the data are used in the form of percent differences from a baseline, 
the dramatic effects that a sm all change in the discount rate causes over 100 years 
is much reduced. 

Regression analysis 

The quantitative analysis consisted of a meta-regression analysis, following 
Repetto and Austin (1997), treating the model results for GDP as the dependent 
variable and the assumptions and CO2 targets as independent variables. Consid-
erations such as the number of production sectors or factor complementarity 
were modeled as li mi ted dependent variables. Characteristics of the models such 
as the approach to the modeling of technical change were incorporated into the 
analysis as qualitative variables. 

The methodology chosen for including variables in the regression was that 
of "general to specific." The WRI list of variables and functional form has been 
generalized to include all the interaction terms; terms that were insignificant at 
the 10% level were dropped (with the exception of the model dummies, which 
were tested and foundjointly significant). This analysis makes the assessment and 
comparison of results in a systematic manner considerably easier. The infiuence 
of the various factors, discussed above, is made clearer so it is possible to assess 
the plausibility of the results of the models. The regression analysis provides an 

4 The additional data are available from the authors on request. 



Table 1. Post-SRES model characteristics: part 1 

Model Projection Coverage Benefits from 
Model types period Regions Sectors Energy types GHGs reducing GHGs 
No. Name (1 ) (2) (3) (4) (5) (6) (7) 
1 AlM ESS (top-down) 1990-2100 19 5 9 CO, Climate change 
2 ASF CGE (static) 1990-2100 9 5 4 CO, None 
3 IIASA-MESSAGE CGE (static) 1990-2100 10 5 7 CO, Climate change 
4 MARIA CGE (dynamic) 1990-2100 8 5 4 CO, Climate change 
5 MiniCAM-ERB IAM (top-down) 1990-2100 11 8 7 CO" CH., and N,O Climate change 
6 PETRO Optimising (top-down) 1990-2100 4 5 3 CO, None 
7 WoridScan-IMAGE CGE (dynamic) 1990-2100 4 11 4 CO, None 

All the models select their parameters by surveys of the literature; all assurne lump-sum recyling of any carbon tax revenues; all assurne efficient energy 
markets; and all assurne constant returns to scale 
WoridScan model was used as part of IMAGE in SRES 
No observations on GDP effects were given for the LDNE model, so it is not included 
CGE, computable general equilibrium; IAM, integrated assessment model; GHGs, greenhouse gases; SRES, Special Report on Emissions Scenarios; ESS, 
Energy System Simulation 
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Table 2. Post-SRES model characteristics: part 2 

Capital 
flows Technology Backstop 

Model modeling modeling technology 
No. Name (1) (2) (3) 

1 AlM None AEEI None 
2 ASF None AEEI None 
3 IIASA-MESSAGE None AEEI NCBT 

4 MARIA None AEEI NCBT 

5 MiniCAM-ERB None AEEI None 

6 PETRO None AEEI NCBT 

7 WorldScan-IMAGE Yes Endogenous None 

See Appendix 1 for fuller list of references for the models 

Economic 
instruments Observations 

(4) (5) 

EI 61 
None 21 
EI 61 

EI 20 

None 51 

None 81 

EI 134 

Main 
ref. 
(6) 

Morita et al. (1994) 
US EPA (1990) 
Messner and Strubegger 

(1995); Riahi and 
Roehrl (2000) 

Mori and Takahashi 
(1999) 

Edmonds et al. 
(1996a,b); (1999) 

Berg et al. (1997a,b); 
Lindholt (1999) 

De Jong and Zalm (1991); 
Bollen et al. (1998) 
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estimate of the mean of model results, providing a baseline against which policies 
can be judged. This may ass ist in building a consensus view of the impact of GHG 
mitigation policies. It also enables the deviation of particular models from the 
mean to be identified. Moreover, remembering that different models have been 
constructed to achieve a range of modeling objectives, the applicability of the 
models to particular questions can be identified. 

3 Reasons for differences in the resnIts 

There are many likely reasons for differences in the results from different 
models, and he re we review the main ones identified in the literature. This is a 
preliminary step required to choose which explanatory variables to include in the 
meta-analysis. This section identifies the main variables used in the meta-analysis 
and discusses the reasons for including them. 

3.1 Methods 

3.1.1 Top-down and bottom-up modeling The adoption of top-down or bottom-
up methods makes a significant difference to the results of mitigation studies. 
In top-down studies the behavior of the economy, the energy system, and their 
constituent sectors are analyzed using aggregate data. In bottom-up studies, 
specific actions and technologies are modeled at the level of the GHG-emitting 
equipment, such as vehicle engines; and policy outcomes are added up to deter-
mine the overall results. The methodologies have a fundamentally different 
treatment of capital equipment and markets. Top-down studies have tended to 
suggest that mitigation policies have economic costs because markets are as-
sumed to operate efficiently, and any policy that impairs this efficiency is costly. 
Bottom-up studies suggest that mitigation can yield financial and economic 
benefits, depending on adoption of the best-available technologies and the 
development of new technologies. Some of the post-SRES models do have 
major bottom-up components, but nearly all have top-down CGE treatment of 
the macroeconomy. Therefore, it was not possible to identify the effect of the 
top-down/bottom-up distinction in the analysis. 

3.1.2 General equilibrium and time-series econometric modeling (variable 
MACRO in the regression results) There are two main types of macroeconomic 
model used for medium- and long-term economic projections: resource alloca-
tion models (i.e., CGE) and time-series econometric models. The main character-
istic of CGE models is that they have an explicit specification of the behavior of 
all relevant economic agents in the economy based on neoclassical economic 
theory. In the mitigation applications they have usually adopted assumptions of 
optimizing rationality, free market pricing, constant returns to scale, many firms 
and suppliers of factors, and perfect competition to provide a market-clearing 
equilibrium in all markets. Any deviation from the assumed optimal equilibrium 
to accommodate environment al policies, by definition, leads to costs in these 
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models unless the environmental benefits of abatement are in corpora ted into the 
optimal solution. Econometric models have relied more on time-series data 
methods to estimate their parameters than on consensus estimates drawn from 
the literature. Results from these models are explained not only by their assump-
tions but also by the quality and coverage of their data. The econometric models 
have increasingly incorporated long-run theory into formal econometric meth-
ods, and several now include a mix of characteristics from both resource alloca-
tion and econometric models (Barker 1998; McKibbin et al. 1999). 

3.2 Assumptions 

Assumptions are crucial for these assessments, sometimes inevitably giving rise 
to costs (e.g., if environment al policies are added to a predicted optimal path 
chosen as the baseline). When the empirical evidence for the assumptions is 
examined, it may become clear that they are often not carefully justified. The 
need for aggregation, the prevalence of inefficiencies, the diversity of production 
structures, the existence of indivisibilities and economies of scale, and the time-
dependent nature of production and technical progress may require a more 
flexible approach to modeling than is generally the case. Before listing the main 
assumptions of the models, there are two factors worth mentioning: uncertainty 
and discounting the future. All of these models have a highly ambitious agenda: 
to model national or even global economies and to predict outcomes well into the 
future, sometimes to 2100 and beyond. This implies that the results are inevitably 
subject to a large degree of uncertainty. In addition, the long time scales involved 
in global analyses mean that the assumed discount rate can have a major effect on 
cost estimates. The costs of COz abatement start to be incurred immediately, 
whereas the benefits cumulate indefinitely into the future, so a high er discount 
rate gives lower benefits of COz abatement. 

3.2.1 Baseline, the scenarios analyzed, and time paths (variable SCEN in the 
regression results) A critical point for the results of any modeling is the definition 
of the baseline (also called reference or business-as-usual) scenario. The IPCC 
SRES (Nakicenovic et al. 2000) explored multiple scenarios using six models and 
identified 40 scenarios divided into six scenario groups. Among the key factors 
and assumptions underlying the reference scenarios are the following. 

1. Population and productivity growth rates. 
2. (Autonomous) improvements in energy efficiency. 
3. Adoption of regulations (e.g., those requiring improvements in air quality: 

if air quality is assumed to be satisfactory in the baseline, the potential for 
air quality co-benefits in any GHG mitigation scenario is ruled out by 
assumption). 

4. Developments in the relative price of fossil fuels. Some of the underlying 
factors are supply-side issues (e.g., oil and gas reserves, development of gas 
distribution networks, relative abundance of coal). Energy policies also playa 
role, particularly tax and subsidy policies. 



144 T. Barker et al. 

5. Technological change (e.g., the spread of combined cycIe gas turbines). 
6. Supply of nonfossil-fuel-based electricity generation (nucIear and hydro). 
7. Availability of competitively priced new sources of energy, so-called backstop 

fuels (e.g., solar, wind, biomass, tar sands). 

Differences in the baseline or reference scenarios lead to differences in the 
effects of mitigation policies. Most notably, a reference scenario with a high 
growth in GHG emissions implies that all the mitigation scenarios associated 
with that reference case require much stronger policies to achieve stabilization. 
Nevertheless, even if reference scenarios were exactly the same, there are other 
reasons for differences in model results. Model specification and, more impor-
tantly, differences in model parameters can also playa significant role in deter-
mining the results. The scenarios analyzed, of course, influence the estimated 
costs of abatement. Costs are expected to increase with higher levels of abate-
ment and with shorter time scales, where the adjustment process requires a 
high er rate of scrapping and investment. The difference between the 450- and 
550-ppm stabilization levels in IPCC SRES scenarios Al, A2, BI, and B2 were 
identified by dummy variables in the analysis reported below. 

3.2.2 Environmental damage and benefits (variable CBENS and NCBENS in the 
regression results) Many models do not incorporate the benefits of preventing 
cIimate change. Instead, modelers have considered only the economic impact of 
meeting some emission standard, which implicitly assurnes (in the base case) that 
cIimate change would have no economic impact. Nevertheless, the potential costs 
incurred by cIimate change are likely to be huge (even though some favorable 
effects are also expected), from damage to property, ecosystem and ecodiversity 
loss, primary sector damage, human well-being, and risk of disaster (e.g., Cline 
1992; Tol 1999). Furthermore, there may be significant noncIimate change-
related environmental benefits arising from the reductions in pollution associated 
with fossil-fuel burning (e.g., improved local air quality). The effects of these 
omissions were investigated by means of dummies, indicating whether the model 
allowed for the benefits of preventing cIimate change in terms of the reduced cost 
of reduced global warming (CBENS) and other noncIimate-change-related 
benefits from CO2 emissions reduction (NCBENS). 

3.2.3 Tax revenues and recycling (variable RECYC in the regression results) If it 
is assumed that revenues are not fully recycIed, any carbon tax induces general 
deflation, reducing the GDP and cutting projected emissions by only a sm all 
amount. Often modelers have tried to distinguish the economic impact arising 
from such an environment al policy from that arising from other tax cuts by 
assuming that revenues will be returned in the form of lump-sum rebates. An 
alternative method is to ass urne that the revenues collected from the carbon tax 
will be used to correct economic distortions in some sectors of the economy that 
could benefit society not only by correcting the pollution externality but also by 
reducing the costs associated with distortionary taxes. The projected economic 
impact may then be substantially more positive than if lump-sum revenue 
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recycling is assumed (owing to the distorting nature of many taxes required and 
justified for revenue-raising purposes) (Barker and Köhler 1998). 

3.2.4 International C02 emission permit trading (variable JI in the regression 
results) A policy to control climate change is (theoretically) efficient when the 
incremental cost of emission reductions is equal in all complying countries. If 
international emissions permit trading is modeled as if all countries set the same 
carbon tax rate, cost-effective emission reductions are advantageous wherever 
they arise. Hence, models that consider permit trading usually yield lower costs 
than models in which mitigation is achieved by a domestic carbon tax. 

3.3 Modeling industrial production (variable PRODS in the regression results) 

Global models are necessarily highly aggregated, and a shortcoming of some 
global models is the modeling of a limited number of industrial sectors or, indeed, 
no sectoral dis aggregation. In practice, different products have different energy 
requirements during their production, and therefore any changes in consumption 
and production patterns affect them differently. Hence a highly aggregated 
model misses some potentially major interactions between output and energy 
use, which is precisely the purpose of the analysis. Sectoral dis aggregation allows 
the modeling of a shift toward less energy-intensive sectors, allowing a response 
to energy price rises by areduction in the share of energy in total input. Aggre-
gation issues are related not only to sectors but also to factors of production. 
Factor dis aggregation allows incorporation of energy and factor substitution in 
the modeling, a crucial matter for simulating GHG abatement costs. The prob-
lem here is that estimates of substitution elasticities usually are highly sensitive to 
model specification and choice of sampIe period. There is little agreement on the 
sign and magnitude of substitution elasticities. Indeed, empirical studies suggest-
ing complementary between the two factors are as frequent as findings suggesting 
substitut ability. The models of Burniaux et al. (1992) and Manne and Richels 
(1990, 1992) are examples of models with contradictory selections of factor 
complementarity. The analysis reported here extends that of Repetto and Austin 
(1997) by including the number of industrial sectors in the models (PRODS) 
instead of just a dummy variable to indicate whether product substitution is 
included. 

Constant returns to scale represent one of the most common assumptions in 
economic analyses. In practice, however, economies of scale seem to be the rule 
rather than the exception, especially in the energy sector. Electricity-generating 
stations sometimes benefit from considerable economies of scale, utilizing a 
common pool of resources including fuel supply, equipment maintenance, voltage 
transformers, and connection to the grid. Under increasing returns to scale, 
oligopolists do not necessarily pay the marginal products of the factors they use. 
Furthermore, because the perfect competition assumption is also not valid, repre-
sentation of the economy in those CGE models that also assurne constant returns 
to scale (usual in the models covered here) are not theoretically consistent. 
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3.4 Energy sector representation (variable FUELS in the regression results) 

Because energy input is directly affected by GHG policies, the specification 
of the energy sector in the modeling is crucial. Arguments similar to those far 
production sector modeling apply to the energy sector particularly in regard to 
aggregation and substitution. It is necessary to allow substitution among fuels 
with different GHG emission characteristics and costs. The argument is that the 
more fuels that are distinguished in a model, the more potential there is for 
substitution and hence the lower the cost of mitigation. 

Markets, including the energy sector, are usually assumed to be perfectly 
efficient, with price changes ensuring that supply always meets demand. 
Nevertheless, there is a huge literature on inefficiencies in the use of energy 
(IPCC 1996b, 2001). The bottom-up approach to energy modeling has identified 
widespread instances where markets do not clear, institutions do not react to 
price changes, and energy is wasted. It is argued that this points to hidden costs, 
but there is a danger that this justification is a circular argument; that is, any 
departure from the perfectly efficient model is treated as being due to hidden 
costs. 

3.5 Treatment of technology 

3.5.1 Assumptions about technical progress The treatment of technological 
change is crucial for macroeconomic modeling of mitigation. The usual me ans 
of incorporating technical progress in CGE models is through the use of time 
trends, such as exogenous variables that are constant across sectors and over 
time. Technical progress usually enters the models via two parameters: (1) au-
tonomous energy efficiency improvement (if technical progress pro duces energy 
savings, the value share of energy in the total cost is reduced); and (2) changes in 
total factor productivity. The implication of this treatment is that technological 
progress in the models is assumed to be invariant to the mitigation policies being 
considered. If in fact the policies lead to improvements in technology, the costs 
may be lower than the models suggest. Dowlatabadi (1998) found that economies 
of learning can lead to a 50% reduction in CO2 abatement costs. Grubb et al. 
(2002) reviewed the modeling of technological change in energy-environment 
models and concluded that the incorporation of endogenous technical change can 
have a major impact on the results. This was taken into account in the current 
analysis by including model dummies far the post-SRES models. 

3.5.2 Assumptions about a backstop technology (variable NCBK in the regression 
results) If any fuel be comes perfectly elastic in supply (backstop technology), the 
overall price of energy is determined independently of the level of demand, 
becoming the critical determinant of abatement costs. When a carbon tax is 
introduced in the context of noncarbon backstop technologies that are on the 
verge of becoming competitive, substitution away from conventional fuels as the 
main energy source is significant. Thus, models without backstop technologies 
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tend to estimate a larger economic impact from a carbon tax. The implicit 
assumption in these models is that carbon taxes would have to rise indefinitely 
to keep carbon concentrations constant during economic growth. Some models 
recognize nonfossil energy sources but assurne limited availability of the re-
source, implying increasing prices for the use of large amounts. If a model 
assurnes that backstop energy sources are available at nonincreasing prices, the 
problem that arises is how to estimate this critical price; this is of course an 
uncertain variable that considerably influences the substitution response to in-
creased fossil fuel prices. 

4 Results: meta-analysis 

The results of the meta-analysis are shown in two parts. First, the data are plotted 
in scatter plots for the data set and for the individual post-SRES models. The 
regression results are then given and interpreted. 

4.1 Plots of results 

Data are available for seven IAMs, run using the scenarios developed for the 
IPCC assessment (Nakicenovic et al. 2000): AlM, ASF, MESSAGE-MACRO, 
MARIA, MiniCAM, PETRO, and WorldScan (Tables 1, 2). This data set has the 
advantage that all the models are run to the same set of scenarios, eliminating one 
major source of uncontrolled variation. This is because large-scale models incor-
porate many assumptions ab out future technological paths and policies as well as 
the CO2 reduction target. The data are plotted for allliterature models in Fig. 1, 
for all SRES scenarios in Fig. 2, and for the individual post-SRES models in Figs. 
3-9. There are same outlying results with large reductions in the GDP from the 
base case (from the AlM and ASF models). The results are strongly clustered, 
with only a few results outside the range of -4% to 0% GDP, with a strong 
correlation between CO2 reduction and GDP reduction. An interesting pattern is 
evident in the plot of GDP against the number of years: The range of the results 
is roughly constant from 20 to 60 years after which it begins to increase. This 
pattern is most evident in the AlM and WorldScan models. Most ofthe data were 
for the 450 and 550ppm CO2 targets; however, no firm conclusions can be drawn 
from this plot ab out the relation between the strength of the concentration target 
and the cost of achieving it. 

4.2 Regression equations 

A quantitative meta-analysis was undertaken by regressing the difference from 
baseline GDP (in percent) on the corresponding percentage change in CO2 

emissions and aseries of dummy variables representing the economic character-
istics of the models listed in Tables 1 and 2. The dummy variables are assumed to 
affect the linear or quadratic relation between GDP and CO2, so they are all 
multiplied by the CO2 variable in the regressions. The results are reported for the 
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Fig. 1. Models from the literature. Note: In Figs. 1-10: GDP and COz are shown as the 
percentage differences from baseline values. Stabilization levels are in CO2 concentrations 
as parts per million by volume (ppmv) 

ordinary least squares (OLS) and robust regressionss in Appendix 4, with the 
names of the model characteristics listed in Appendix 2. No dummy variables for 
the models are included in this regression. Whereas the concentration targets 

5 Robust regression is a technique for allowing multiple results to be genera ted from individual 
models, where the errors may be heterogeneous or otherwise nonnormal (Judge et al. 1988, Ch. 
22). 
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Fig. 2. Intergovernmental Panel on Climate Change (IPCC) integrated assessment 
models (IAMs) 

(included in addition to the COz variables) were insignificant, all the model 
characteristics are significant in one form or another at a 1 % level in both 
regressions. The response of the GDP to years is also significant. These strong 
results are probably due to the common scenarios used for all the models. 

The robust regression results were compared with OLS regression results and 
were found to make a difference for the values of some of the estimated param-
eters. Therefore, it is the robust results that are mainly discussed below. 

1. The SRES scenario dummy (SCENCOz) shows that such dummies are poten-
tially important, as might be expected, because each scenario family is charac-
terized by a different level and mix of fossil and nonfossil fuels, although 
quantitatively the effect is negligible. 

2. The effect of using a macroeconomic model (MACRO) instead of a comput-
able general equilibrium model is the same sign as in the WRI study. The 
econometric model results have high er costs of about 1.5 pp of the global GDP 



150 

2 
1 
o 

-1 
Q. -2 

"tJ 
Cl -3 

-4 
-5 
-6 
-7 

• • • : 1- 1-
o 

• • • • • • • • • -

• • .& 

* .-
years 

20 

o • • 
• 

1'0 • 1 ·0 
-20 +---11- -1--1-

es -40 
. . • I 

-60 

-80 

-100 --'----_____________ ----.J 

years 

Fig. 2. Continued 

T. Barker et al. 

for a 30% reduction in COz compared with the WRI result of 1.7 pp for the 
U.S. economy. 

3. Contrary to expectation, the number of production sectors (PROD) has a 
positive effect on GDP costs, suggesting misspecification in that this number 
may be representing the different models rather than the degree of praduct 
substitution. 

4. The number of energy sectors (ENSEC) has a negative effect on costs, as 
expected; that is, the high er the capacity for substitution between fuels, the 
lower the costs reported by the models. The size of the effect is raughly 
opposite that of the number of production sectors. 

5. The number of regions, another variable indicating the models' capacity for 
substitution, is also significant but has the wrang sign, although it has a small 
effect. 

6. Finally, noncarbon backs top technology (NCBK) is highly significant but also 
of the wrang sign. If the model includes such technology, a 30% reduction in 
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CO2 implies an increase in costs of 0_5 pp of the global GDP, compared with 
the WRI result of a reduction of 0_5 pp for the D.S. economy. Again, there may 
be a problem of specification error. There are three models with backstop 
technology in the data set (IIASA, MARIA, PETRO), and these models 
may report higher costs in general, not just because they include backstop 
technologies. 

In response to these problems of likely specification errors, a second regression 
is calculated, including CO2 reduction and a set of dummy variables representing 
each model (see Appendix 3), with quadratic CO2 inter action terms. Results for 
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the OLS and robust regressions are shown in Appendix 5. The goodness of fit is 
slightly higher than for the equation with model characteristics. This equation 
effectively explains the GDP costs based on CO2 reduction and the model being 
used. Each model yields results on a particular curve showing how the costs 
change, as shown on Fig. 10. The fact that this explanation of the costs is 
comparable to that from the model characteristics suggests that there may weIl be 
a problem of specification error in the earlier equations, with combinations of 
characteristics acting as proxy variables for each model's overall properties. 

The regression results reported in Appendix 6 add the characteristic 
dummy variables to the previous equation, including only those that are 
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significant. However, the signs of the effects remain the same as those In 

Appendix 4. 
There are three conclusions to be drawn from this analysis. 

1. Model characteristics significantly influence results. Because these character-
istics follow from the underlying theoretical assumptions and the structural 
assumptions built into the models, results from large-scale models must always 
be read with the influence of the model structure in mind. 

2. The assumptions about policy and technology scenarios, such as the inclusion 
of joint implementation or a noncarbon backstop technology, also strongly 
influence the results. 

3. The method, combined with the sm all number of models included in the data 
set, can lead to specification error, with the effects of model characteristics 
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domina ted by model dummy variables. The answer to the specification prob-
lem is to include more results from other models, as is done below. 

4.3 Results tram combining the post-SRES results with those tram the literature 

The post -SRES data were combined with the data set obtained by a review of the 
literature. The data here are mixed in that results for different regions are 
included, as are the post-SRES global results. The purpose of the regression was 
to determine if the post-SRES model dummies could yield more information 
about the effects of the use of the different models in addition to the model 
characteristics identified as affecting the results. This exercise makes evident an 
important issue in the building of such data sets: Because the number of data 
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points for each model is different, the models are weighted unevenly in the 
regression. Because the model characteristics are used as explanatory variables, 
this impact is reduced; but any idiosyncratic effect associated with a particular 
model influences the results according to the number of data points included 
from that model. However, because the model characteristic variables vary only 
between models, including model dummies, it leads to linear dependence 
between the dummies and the model characteristic variables for the IAMs. In 
this combined data set, the IAM dummies were included and were found to be 
significant for several of the IAMs. In addition, the MACRO variable, differen-
tiating between CGE and non-CGE models, becomes significant in comparison 
to the data set from the post-SRES studies. 

The OLS and robust regression results using the combined data set are 
reported in Appendix 7. The main conclusions are as folIows. 

1. No significant or sizable recycling effect (RECYC) is evident in the robust 
regression, although it is significant and sizable (1.0 pp ) in the OLS results. 
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This may be due partly to the fact that all the post-SRES studies and many of 
the other studies ass urne lump-sum recycling, so identification of the effect is 
problematic. 

2. The backs top technology effect (NCBK and interation terms) is negative, as 
expected, for reductions in CO2 below ab out 30%, but it be comes positive for 
larger reductions. 

3. If there is a benefit from mitigation included in the model (CBENSC02) , costs 
are reduced. 

4. The econometric models (MACRO) have high er costs, but the effect (1.0pp 
for a 30% CO2 reduction) is sm aller than that found in the WRI study (1.7 pp). 

5. Joint implementation re duces costs, but the effect is small. 
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6. Finally, the high er the number of energy sectors, indicating more substitution 
possibilities in the model, the lower are the costs, although again the effects 
are small. 

5 Conclusions 

1. Model characteristics can be shown to influence their results significantly. 
Therefore, the debate about how to build models and how their structures 
differ is important in the area of the cost of mitigating dimate change. 

2. Much of the variation in the results among models can be explained by the 
choice of assumption, so such choices should be made explicit when reporting 
results. 
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Fig.10. Global gross domestic product (GDP) costs of CO2 mitigation. Post-SRES, after 
the IPCC Special Report on Emissions Scenarios 

3. All modeling results regarding "GDP costs of mitigating climate change" 
should be qualified by the key assumptions leading to the estimate. The 
important assumptions are as follows: (1) the type of model (CGE or 
macroeconometric); (2) whether a backstop technology is included; (3) 
wh ether and how carbon tax revenues are recycled; (4) whether environmen-
tal benefits are included; and (5) whether some form of international joint 
implementation is allowed. The treatment of these assumptions can lead to the 
mitigation being associated with increases in GDP rather than reductions. 

4. There are research benefits from coordinating assumptions and scenarios 
when estimating the effects of mitigation, as done by the Energy Modeling 
Forum or the IPCC. The IPCC Post-SRES data set has the advantage of 
various models being run with scenarios that are as similar as possible, given 
the model structures. The results can be more easily compared, the bias es of 
the different models identified, and the effects of the assumptions measured 
with more confidence. 

5. The meta-analysis of results from a body of literature can provide convincing 
quantitative estimates of the influence of various assumptions and model 
approaches. This can be a useful addition to the usual qualitative reviews in 
the literature. 

Acknowledgments. The research for this paper was funded by the UK ESRC (project 
R00223024). The authors are grateful to the model proprietors for giving access to the data 
from the post-SRES stabilization scenarios and to Prof. Tsuneyuki Morita for co11ecting 
and providing the data in a convenient form. The authors are also grateful for a11 
comments and discussion received at the workshops and seminars where the results and 
arguments in the paper have been discussed, namely those at the Department of Applied 
Economics, University of Cambridge, UK, and the Tynda11 Centre at University of East 
Anglia, Norwich, UK. 



Post-SRES scenarios: costs of GHG abatement 159 

References 

Azar C (1998) Are optimal CO, emissions really optimal? Four critical issues for economists in the 
greenhouse. Environmental & Resource Economics 11:301-315 

Barker T (1998) Large-scale energy-environment-economy modelling of the European Union. 
In: Begg I, Henry B (eds) Applied economics and public policy. Cambridge University Press, 
Cambridge, UK 

Barker T, Ekins P (2001) How high are the costs of Kyoto for the US economy? Tyndall Centre 
working paper no. 4, Norwich, UK, www.tyndall.ac.uk/publications/workinlLpapers/workinlL 
papers.shtml 

Barker T, Köhler J (1998) Equity and ecotax reform in the EU: achieving a 10% reduction in CO2 

emissions using excise duties. Fiscal Studies 19:375-402 
Barker T, Rosendahl KE (2000) Ancillary benefits of GHG mitigation in Europe: SO" NOx and PMlO 

reductions from policies to meet Kyoto targets using the E3ME model and EXTERNE valuations', 
Ancillary Benefits and Costs of Greenhouse Gas Mitigation, Proceedings of an IPCC Co-
Sponsored Workshop, March, 2000, OECD, Paris. 

Burniaux JM, Martin JP, Nicoletti G, Oliveira-Martins J (1992) GREEN: a multi-region dynamic 
general equilibrium model for quantifying the costs of curbing CO, emissions: a technical manual. 
Working paper no. 116. Economics and Statistics Department, OECD, Paris 

Carraro C, Hourcade JC (1998) Climate modelling and policy strategies: the role of technical change 
and uncertainty. Energy Economics 20:463-471 

Cline W (1992) The economics of global warming. Institute for International Economics, 
Washington, DC 

Cooper A, Livermore S, Rossi V, Walker J, Wilson A (1999) Economic impacts of reducing carbon 
emissions: the Oxford model. Energy Journal Special Issue:335-365 

DeCanio SJ (1997) Economic modeling and the false tradeoff between environment al protection and 
economic growth. Contemporary Economic Policy 15(4):10-27 

Dowlatabadi H (1998) Sensitivity of c1imate change mitigation estimates to assumptions about 
technical change. Energy Economics 20:473-493 

Gmbb M, Köhler J, Anderson D (2002) Induced technical change in energy and environment al 
modeling: analytic approaches and policy implications. Annual Reviews of Energy and the 
Environment 27:271-308 

IPCC (1996a) The science of c1imate change, Voll of Climate Change. IPCC Second Assessment 
Report. Cambridge University Press, Cambridge, UK 

IPCC (1996b) Climate change, Vol 3: Economic and social dimensions of c1imate change. IPCC 
second assessment report. Cambridge University Press, Cambridge, UK 

IPCC (2001) Climate Change 2001 Synthesis Report. A contribution of Working Groups, I, 11 and 111 
to the Third Assessment Report of the IPCC [Watson RT and the core writing team (eds)]. 
Cambridge University Press, Cambridge, UK 

Judge G, Hill RC, Griffiths WE, Lütkepohl H, Lee T-C (1988) Introduction to the theory and practice 
of econometrics. Wiley, New York 

Mabey N, Hall S, Smith C, Gupta S (1997) Argument in the greenhouse: the international economics 
of controlling global warming. Routledge, London 

Manne AS, Richels RG (1990) The costs of reducing U.S. CO, emissions: further sensitivity analyses. 
Energy Journal 11(4):69-78 

Manne AS, Richels RG (1992) Buying greenhouse insurance: the economic costs of CO, emission 
limits. MIT Press, Cambridge, MA 

McKibbin W, Ross M, Shackleton R, Wi1coxen P (1999) Emissions trading, capital flows and the 
Kyoto Protocol. Energy Journal Special Issue:287-334 

Morita T, Nakicenovic N, Robinson J (2000) Overview of mitigation scenarios for global c1imate 
stabilization based on new IPCC emission scenarios (SRES). Environmental Economics and Policy 
Studies 3(1, Special Issue ):65-88 

Nakicenovic N, A1camo J, Davis G, de Vries B, Fenhann G, Gaffin S, Gregory K, Grübler A, Jung 
TY, Kram T, La Rovere L, Michaelis L, Mori S, Morita T, Pepper W, Pitcher H, Price L, Riahi K, 
Roehrl A, Rogner HH, Sankovski A, Schlesinger M, Shukla P, Smith S, Swart R, van Rooijen S, 
Victor N, Dadi Z (2000) IPCC (Intergovemmental Panel on Climate Change) Special report on 



160 T. Barker et al. 

emissions scenarios, a special report of working group III of the Intergovernmental Panel on 
Climate Change. Cambridge University Press, Cambridge, UK 

Nijkamp P, Pepping G (1998) A meta-analytical evaluation of sustainable city initiatives. Urban 
Studies 35:1481-1500 

Nordhaus W (1994) Managing the global commons: the economics of c1imate change. MIT Press, 
Cambridge, MA 

Rana A, Morita T (2000) Scenarios for greenhouse gas emission mitigation: a review of modeling of 
strategies and policies in integrated assessment models. Environmental Economics and Policy 
Studies 3(1, Special Issue ):267-289 

Repetto R, Austin D (1997) The costs of climate protection: a guide for the perplexed. World 
Resources Institute, Washington, DC 

Smith VK, Kao Y (1990) Signals or noise? Explaining the variation in recreation benetit estimates. 
American Journal of Agricultural Economics 72:419-433 

Stanley TD, Jarrell SB (1989) Meta-regression analysis: a quantitative method of literature surveys. 
Journal of Economic Surveys 3:161-170 

Tol RSJ (1999) The marginal costs of greenhouse gas emissions. Energy Journal 20(1):61-81 
Van den Bergh J-CJM, Button KJ (1997) Meta-analysis of environmental issues in regional, urban 

and transport economics. Urban Studies 34:927-944 
Weyant JP (1993) Costs of reducing global carbon emissions. Journal of Economic Perspectives 

7(4):27-46 
Weyant JP, Hill J (1999) Introduction and overview. Energy Journal Special Issue:vii-xliv 

Appendix 1: References for models with results in the post-SRES dataset 

Main Reference for AU Models 
Nakicenovic, Alcamo J, Davis G, de Vries B, Fenhann G, Gaftin S, Gregory K, Grübler A, Jung TY, 

Kram T, La Rovere L, Michaelis L, Mori S, Morita T, Pepper W, Pitcher H, Price L, Riahi K, 
Roehrl A, Rogner HH, Sankovski A, Schlesinger M, Shukla P, Smith S, Swart R, van Rooijen S, 
Victor N, Dadi Z (2000) IPCC (Intergovernmental Panel on Climate Change) Special Report on 
Emissions Scenarios, a special report of working group III of the intergovernmental panel on 
c1imate change, Cambridge University Press, Cambridge, 336-351 

AlM 
Morita T, Matsuoka Y, Kainuma M, Harasawa H (1994) AIM-Asian Pacitic integrated model for 

evaluating policy options to reduce GHG emissions and global warming impacts. In: Bhattacharya 
S, Pittock AB, Lucas NJD (eds) Global warming issues in Asia. AlT, Bangkok, pp 254-273 

ASF 
US EPA (1990) Policy options for stabilizing global climate. Report to Congress, Technical 

Appendices. United States Enviromental Protection Agency, Washington, DC 
Pepper WJ, Leggett J, Swart R, Wasson J, Edmonds J, Mintzer I (1992) Emissions scenarios for the 

IPCC; an update: assumptions, methodology, and results. Support document for chapter A3. In: 
Houghton JT, Callandar BA, Varney SK (eds) Climate change 1992: supplementary report to the 
IPCC scientific assessment. Cambridge University Press, Cambridge, UK 

Pepper W, Barbour W, Sankovski A, Braatz B (1998) No-policy greenhouse gas emission scenarios: 
revisiting IPCC 1992. Environmental Science and Policy, 1:289-312 

Riahi K, Roehrl RA (2000) Greenhouse gas emissions in a dynamics as usual scenario of economic 
and energy development. Technological Forecasting & Social Change, 63, (2-3) (in press) 

MARIA 
Mori S, Takahashi M (1999) An integrated assessment model for the evaluation of new energy 

technologies and food productivity. International Journal of Global Energy Issues 11(1-4):1-18 

MESSAGE III 
Grübler A, Messner S (1998) Technological change and the timing of mitigation measures, Energy 

Economics 20:495-512 



Post-SRES scenarios: costs of GHG abatement 161 

Messner S, Strubegger M (1995) User's guide for MESSAGE III. WP-95-69. IIASA, Laxenburg, 
Austria 

MiniCAM 
Edmonds J, Scott MJ, Roop JM, MacCracken CN (1999) International emissions trading and global 

climate change: impacts on the costs of greenhouse gas mitigation. Pew Center on Global Climate 
Change, Washington, DC 

Edmonds J, Wise M, Pitcher H, Richels R, Wigley T, MacCracken C (1996a) An integrated assess-
ment of climate change and the accelerated introduction of advanced energy technologies: an 
application of MiniCAM 1.0. Mitigation and Adaptation Strategies for Global Change 1:311-339 

Edmonds J, Wise M, Sands R, Brown R, Kheshgi H (1996b) Agriculture, land-use, and commercial 
biom ass energy: a preliminary integrated analysis of the potential role of biomass energy for 
reducing future greenhouse related emissions. PNNL-11155. Pacific Northwest National Labora-
tories, Washington, DC 

PETRO 
Lindholt L (1999) Beyond Kyoto: CO, permit prices and the market for fossil fuels. Discussion paper 

258, Statistics Norway, Oslo 
Berg E, Kverndokk S, Rosendahl KE (1997a) Market power, international CO, taxation and oil 

wealth. Energy Journal 18(4):33-71 
Berg E, Kverndokk S, Rosendahl KE (1997b) Gains from cartelisation in the oil market. Energy 

Policy 25(13):1075-1091 

WoridScan-IMAGE 
Alcamo J, Leemans R, Kreileman E (eds) (1998) Global change scenarios of the 21st century: results 

from the IMAGE 2.1 model. Elsevier Science, London 
De Jong A, Zalm G (1991) Scanning the future: A long-term scenario study of the world economy 

1990-2015 in Long-term Prospects of the World Economy. OECD, Paris, pp 27-74 
De Vries B, Janssen M, Beusen A (1999) Perspectives on global energy futures-simulations with the 

TIME model. Energy Policy 27:477-494 
De Vries B, Bollen J, Bouwman L, den Elzen M, Janssen M, Kreileman E, Leemans R (2000) 

Greenhouse gas emissions in an equity-, environment-, and service-oriented world: an IMAGE-
based scenario for the next century. Technological Forecasting & Social Change 63:137-174 

Appendix 2: Regression variables using ST AT A 5.0 

Variable 

GNP reduction from baseline 
CO, reduction from baseline 
No. of years to meet the abatement target 
Macro (1) or CGE (0) 
Noncarbon backstop technology (1 = yes) 
Lump-sum (0) or recycling (1) of tax revenues 
Economic benefit from reducing climate change (1 = yes) 
Economic benefit from reducing pollution (1 = yes) 
Permit trading or 11 (both 1) 
Product substitution (no. of sectors) 
No. of energy sectors/types 
No. of geographical regions in the model 
Scenario dummy SRES scenarios 

Type 

% 
% 
Number 
o or 1 binary 
o or 1 binary 
o or 1 binary 
o or 1 binary 
o or 1 binary 
o or 1 binary 
Number 
Number 
Number 
Dummy 

Variables including CO, (CO,') in the name are multiplied by the CO, (CO/) variable 

Name 

GDP 
CO, 
YRS 
MACRO 
NCBK 
RECYC 
CBENS 
NCBENS 
11 
SECTORS 
FUELS 
REGIONS 
SCEN 

GNP, gross national product; CGE, computable general equilibrium; SRES, IPCC special report on 
emissions scenarios 
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Appendix 3: Identifiers of model dummies 

Model 

AlM 
ASF 
IIASA-MESSAGE III 
MARlA 
MiniCAM 
PETRO 
WorldScan-lMAGE 

Dummy 

d1 
d2 
d3 
d4 
d5 
d6 
d7 

T. Barker et al. 

Appendix 4: IAM models ron with IPCC scenarios and model characteristics 
and assumptions 

Summary 
Number of observations = 429 
RZ = 0.6787 
Adjusted R2 = 0.6702 
Root (MSE) = 0.56941 
F(l1, 417) = 80.07 
MSE, me an squared error 

Analysis of variance 

Source SS df MS 

Model 
Residual 

285.576981 
135.201484 

11 
417 

25.9615437 
0.324224182 

Total 420.778465 428 0.983127254 

OLS regression estimates 

GDP Coef. SE 

CO2 0.1464186 0.0183351 7.986 
SCENC02 -0.0000278 0.00001 -2.766 
MACRO -1.42015 0.2242835 -6.332 
SECTORS 0.5764682 0.1262651 4.566 
SECTCOz -0.0118851 0.0018396 -6.461 
FUELS -0.6290794 0.1578408 -3.986 
FUELSC02 0.0104389 0.0026833 3.890 
REGIONS 0.3417216 0.0931939 3.667 
REGIOC02 -0.0065818 0.0016305 -4.037 
BST 1.418276 0.4558557 3.111 
BSTC02 -0.0735666 0.00819 -8.983 
_cons -3.678324 0.9941182 -3.700 

OLS, ordinary least squares 

Robust regression estimates F(l1, 417) = 585.47 

GDP Coef. SE 

COz 0.1279618 0.0055429 23.086 
SCENC02 -4.83e-07 3.04e-06 -0.159 
MACRO -0.4834313 0.0678035 -7.130 

p> Itl 95% Confidence interval 

0 0.1103779 0.1824593 
0.006 -0.0000475 -8.04e-06 
0 -1.861017 -0.9792828 
0 0.3282729 0.8246635 
0 -0.0155011 -0.0082691 
0 -0.9393422 -0.3188166 
0 0.0051643 0.0157134 
0 0.1585332 0.5249099 
0 -0.009787 -0.0033767 
0.002 0.5222144 2.314337 
0 -0.0896654 -0.0574678 
0 -5.632431 -1.724216 

p> Itl 95% Confidence interval 

0 0.1170663 0.1388574 
0.874 -6.45e-06 5.4ge-06 
0 -0.6167105 -0.350152 
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Robust regression estimates F(l1, 417) = 585.47. Continued 

GDP Coef. SE p> Itl 95% Confidence interval 

SECTORS 0.1591171 0.0381714 4.168 0 0.0840848 0.2341494 
SECTCO, -0.011614 0.0005561 -20.884 0 -0.0127071 -0.0105208 
FUELS -0.1484916 0.0477171 -3.112 0.002 -0.2422876 -0.0546956 
FUELSCO, 0.0094403 0.0008112 11.637 0 0.0078457 0.0110348 
REGIONS 0.0770237 0.0281736 2.734 0.007 0.0216437 0.1324036 
REGIOC02 -0.0065884 0.0004929 -13.366 0 -0.0075573 -0.0056194 
BST 0.3384588 0.1378104 2.456 0.014 0.0675691 0.6093485 
BSTCO, -0.0712087 0.0024759 -28.760 0 -0.0760756 -0.0663418 
_cons -0.9899824 0.3005334 -3.294 0.001 -1.580732 -0.3992332 

Appendix 5: IAM models ron with IPCC scenarios and model dummies 

Summary 
Number of observations = 429 
R' = 0.7307 
Adjusted R' = 0.7175 
Root MSE = 0.52703 
F(20,408) = 55.34 

Analysis of variance 

Source SS df MS 

Model 307.450209 20 15.3725104 
Residual 113.328256 408 0.277765334 

Total 420.778465 428 0.983127254 

OLS regression estimates 

GDP Coef. SE p> Itl 95% Confidence interval 

d1 0.3751535 0.3205787 1.170 0.243 -0.2550385 1.005345 
d2 (dropped) 
d3 0.3824378 0.2663105 1.436 0.152 -0.1410742 0.9059497 
d4 0.2950305 0.4112977 0.717 0.474 -0.5134966 1.103558 
d5 0.2508736 0.2699148 0.929 0.353 -0.2797235 0.7814708 
d6 0.2529344 0.2850799 0.887 0.375 -0.3074743 0.8133431 
d7 0.0816705 0.2662973 0.307 0.759 -0.4418153 0.6051564 
d1CO, 0.0487126 0.013065 3.728 0.000 0.0230295 0.0743957 
d2CO, 0.0168978 0.0168397 1.003 0.316 -0.0162056 0.0500012 
d3CO, 0.0552951 0.0089609 6.171 0.000 0.0376798 0.0729105 
d4CO, 0.0373843 0.0228716 1.635 0.103 -0.0075766 0.0823453 
d5C02 0.0209245 0.010498 1.993 0.047 0.0002877 0.0415614 
d6CO, -1.55e-15 0.0089634 0.000 1.000 -0.0176202 0.0176202 
d7C02 -0.0077707 0.006546 -1.187 0.236 -0.0206389 0.0050974 
dlCO/ 0.0001185 0.0001685 0.703 0.482 -0.0002128 0.0004498 
d2CO/ -0.0006914 0.0002185 -3.165 0.002 -0.001121 -0.0002619 
d3CO/ 0.000585 0.0001161 5.037 0.000 0.0003567 0.0008133 
d4CO,' 0.0006248 0.0003025 2.066 0.040 0.0000302 0.0012195 
d5CO/ -0.0001288 0.0001503 -0.857 0.392 -0.0004242 0.0001665 
d6CO,' -1.84e-17 0.000101 0.000 1.000 -0.0001986 0.0001986 
d7CO,' -0.0003301 0.0000754 -4.376 0.000 -0.0004784 -0.0001818 
cons -0.2529344 0.2405253 -1.052 0.294 -0.725758 0.2198892 -
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Robust regression estimates [F(l1, 417) = 544.47] 

GDP Coef. SE P> Itl 95% Confidence interval 

d1 -0.2110259 0.0913398 -2.310 0.021 -0.3905812 -0.0314706 
d2 (dropped) 
d3 0.1422799 0.0758776 1.875 0.061 -0.00688 0.2914397 
d4 0.1526107 0.1171876 1.302 0.194 -0.0777561 0.3829775 
d5 0.0640194 0.0769045 0.832 0.406 -0.0871591 0.215198 
d6 0.0656674 0.0812254 0.808 0.419 -0.0940052 0.2253399 
d7 0.0618694 0.0758738 0.815 0.415 -0.087283 0.2110218 
dlC02 0.0003093 0.0037225 0.083 0.934 -0.0070083 0.007627 
d2C02 0.024164 0.004798 5.036 0.000 0.0147321 0.0335959 
d3C02 0.0482548 0.0025532 18.900 0.000 0.0432358 0.0532737 
d4C02 0.047849 0.0065166 7.343 0.000 0.0350387 0.0606594 
d5C02 0.0214953 0.0029911 7.186 0.000 0.0156154 0.0273751 
d6C02 1.26e-15 0.0025539 0.000 1.000 -0.0050204 0.0050204 
d7C02 0.0099011 0.0018651 5.309 0.000 0.0062347 0.0135675 
dlCO} -0.0004398 0.000048 -9.159 0.000 -0.0005342 -0.0003454 
d2CO} -0.0006803 0.0000623 -10.928 0.000 -0.0008026 -0.0005579 
d3CO/ 0.000576 0.0000331 17.407 0.000 0.0005109 0.000641 
d4CO/ 0.0007187 0.0000862 8.339 0.000 0.0005493 0.0008881 
d5CO/ -0.000111 0.0000428 -2.593 0.010 -0.0001952 -0.0000269 
d6CO/ 1.37e-17 0.0000288 0.000 1.000 -0.0000566 0.0000566 
d7CO/ -0.0000211 0.0000215 -0.983 0.326 -0.0000634 0.0000211 
_cons -0.0656674 0.0685309 -0.958 0.339 -0.200385 0.0690503 

Appendix 6: IAM models ron with IPCC scenarios, model dummies, 
and characteristics 

Summary 
Number of observations = 429 
R2 = 0.7426 
Adjusted R2 = 0.7294 
Root MSE = 0.51583 
F(20, 408) = 55.92 

Analysis of variance 

Source 

Model 
Residual 

Total 

SS 

312.484047 
108.294418 

420.778465 

OLS regression estimates 

GDP Coef. 

CO2 (dropped) 

df 

21 
407 

428 

SE 

MS 

14.8801927 
0.266079651 

0.983127254 

CO} 0.0006248 0.0002961 2.110 
dl (dropped) 
d2 (dropped) 
d3 (dropped) 
d4 0.2336572 0.3933246 0.594 
d5 -0.0290128 0.1701649 -0.170 

P>ltl 95% Confidence interval 

0.035 0.0000428 0.0012068 

0.553 -0.5395442 1.006859 
0.865 -0.3635247 0.305499 
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OLS regression estimates. Continued 

GDP Coef. SE P >Itl 95% Confidence interval 

d6 0.2337917 0.3025017 0.773 0.440 -0.360869 0.8284524 
d7 (dropped) 
d1CO, 0.0619713 0.0133039 4.658 0.000 0.0358183 0.0881243 
d2CO, 0.0444899 0.0176274 2.524 0.012 0.0098378 0.079142 
d3CO, 0.0276578 0.0241464 1.145 0.253 -0.0198094 0.0751249 
d4CO, (dropped) 
d5CO, 0.0350061 0.0114472 3.058 0.002 0.0125031 0.0575092 
d6CO, -0.0245579 0.0242232 -1.014 0.311 -0.0721761 0.0230603 
d7CO, (dropped) 
d1CO,' -0.0005646 0.0003392 -1.665 0.097 -0.0012314 0.0001021 
d2CO,' -0.0011974 0.0003662 -3.270 0.001 -0.0019174 -0.0004775 
d3CO/ 0.0001195 0.0003192 0.374 0.708 -0.000508 0.0007471 
d4CO/ (dropped) 
d5CO/ -0.0007537 0.0003306 -2.280 0.023 -0.0014035 -0.0001038 
d6CO,' -0.0004345 0.0003152 -1.379 0.169 -0.0010541 0.0001851 
d7CO/ -0.0009289 0.0003052 -3.044 0.002 -0.0015289 -0.0003290 
SCENCO, -0.0000466 0.0000107 -4.350 0.000 -0.0000677 -0.0000255 
MACRO (dropped) 
SECTORS -0.0287015 0.0411518 -0.697 0.486 -0.1095981 0.052195 
SECTCO, 0.0014437 0.0007639 1.890 0.059 -0.0000581 0.0029455 
FUELS 0.1453891 0.0962136 1.511 0.132 -0.0437484 0.3345266 
REGIONS -0.0438498 0.0385117 -1.139 0.256 -0.1195566 0.0318569 
BST (dropped) 
BSTCO, 0.055797 0.0228318 2.444 0.015 0.0109141 0.10068 
eons -0.2788111 0.619396 -0.450 0.653 -1.496426 0.9388034 -

Appendix 7: ResuIts from the post-SRES data and data from 
the literature combined 

Summary 
Number of observations = 608 
R' = 0.6804 
Adjusted R' = 0.6690 
Root MSE = 0.73346 
F(21. 586) = 59.41 

Analysis of variance 

Source SS df MS 

Model 671.207902 21 31.9622811 
Residual 315.249899 586 0.537969111 

Total 986.457801 607 1.62513641 

OLS regression estimates 

GDP Coef. SE P >Itl 95% Confidence interval 

CO,' -0.0005487 0.0000688 -7.971 0.000 -0.0006839 -0.0004135 
CO,YRS -0.0001159 0.0000371 -3.125 0.002 -0.0001887 -0.000043 
RECYC 0.9663811 0.1488957 6.490 0.000 0.6739469 1.258815 
NCBK 0.3972421 0.2317591 1.714 0.087 -0.0579375 0.8524217 
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OLS regression estimates. Continued 

GDP Coef. SE P>ltl 95% Confidence interval 

NCBKCO, 0.0313258 0.0079778 3.927 0.000 0.0156573 0.0469944 
NCBKCO,' 0.000779 0.0000992 7.856 0.000 0.0005842 0.0009737 
CBENSCO, -0.0185536 0.003045 -6.093 0.000 -0.0245339 -0.0125732 
MACRO -0.8153417 0.2181719 -3.737 0.000 -1.243836 -0.3868476 
n -0.4982574 0.2125629 -2.344 0.019 -0.9157353 -0.0807796 
nco, -0.0180246 0.0027037 -6.667 0.000 -0.0233347 -0.0127145 
FUELS 0.1974753 0.0414847 4.760 0.000 0.1159984 0.2789521 
FUELSCO, 0.0064458 0.0007464 8.636 0.000 0.0049799 0.0079118 
SECTORS -0.0348027 0.0126183 -2.758 0.006 -0.0595852 -0.0100201 
SECTORSCO, -0.0015959 0.0003428 -4.656 0.000 -0.0022691 -0.0009227 
dl -0.5195798 0.2648675 -1.962 0.050 -1.039785 0.0006253 
d2 -0.491592 0.2000602 -2.457 0.014 -0.8845144 -0.0986697 
d3 -0.501355 0.2290646 -2.189 0.029 -0.9512425 -0.0514674 
d4 -0.1224707 0.2952849 -0.415 0.678 -0.7024162 0.4574749 
d5 -0.0527601 0.2095652 -0.252 0.801 -0.4643504 0.3588302 
d6 0.8133523 0.2115906 3.844 0.000 0.397784 1.228921 
d7 0.826411 0.1935923 4.269 0.000 0.4461918 1.20663 
cons -0.8661411 0.2079997 -4.164 0.000 -1.274657 -0.4576254 -

Robust regression estimates [F( 21, 586) = 210.96] 

GDP Coef. SE P >Itl 95% Confidence interval 

CO/ -0.0002098 0.0000276 -7.605 0.000 -0.000264 -0.0001556 
CO,YRS -0.0001075 0.0000149 -7.236 0.000 -0.0001367 -0.0000783 
RECYC 0.0395244 0.0596696 0.662 0.508 -0.077668 0.1567167 
NCBK -0.2808925 0.0928769 -3.024 0.003 -0.4633047 -0.0984804 
NCBKCO, -0.0043891 0.0031971 -1.373 0.170 -0.0106683 0.00189 
NCBKCO/ 0.0001884 0.0000397 4.740 0.000 0.0001103 0.0002664 
CBENSCO, -0.0122513 0.0012203 -10.040 0.000 -0.0146479 -0.0098546 
MACRO -0.3161975 0.0874319 -3.617 0.000 -0.4879156 -0.1444795 
JI -0.0967293 0.0851841 -1.136 0.257 -0.2640325 0.070574 
nco, -0.012605 0.0010835 -11.634 0.000 -0.0147331 -0.010477 
FUELS 0.0921847 0.0166249 5.545 0.000 0.0595331 0.1248364 
FUELSC02 0.0060803 0.0002991 20.328 0.000 0.0054928 0.0066678 
SECTORS 0.0282542 0.0050567 5.587 0.000 0.0183227 0.0381857 
CO, -0.0005152 0.0001374 -3.750 0.000 -0.000785 -0.0002454 
dl -0.4430561 0.106145 -4.174 0.000 -0.6515271 -0.2345851 
d2 -0.5123044 0.0801737 -6.390 0.000 -0.6697671 -0.3548417 
d3 -0.0202792 0.0917971 -0.221 0.825 -0.2005706 0.1600122 
d4 -0.2397138 0.1183347 -2.026 0.043 -0.4721256 -0.007302 
d5 -0.3644389 0.0839828 -4.339 0.000 -0.5293827 -0.199495 
d6 0.4892241 0.0847944 5.770 0.000 0.3226861 0.6557621 
d7 -0.2074015 0.0775817 -2.673 0.008 -0.3597735 -0.0550296 
cons -0.4846468 0.0833554 -5.814 0.000 -0.6483585 -0.3209352 


